
LA-UR-
Approved for public release; 
distribution is unlimited. 

~"f~ 
iii· Los Alamos 

NATIONAL LABORATORY 
--- EST.1943 ---

Title: v9fb: A Remote Framebuffer Infrastructure for Linux 

Author(s): Abhishek Kulkarni, CCS-1 
Latchesar lonkov, CCS-1 
Los Alamos National Laboratory 

Intended for: 3rd International Workshop on Plan 9 
Computer and Communication Engineering Department 
University of Thessaly, Volos, Greece 
October 30th & 31st, 2008 

Los Alamos National Laboratory, an affirmative actioniequal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE·AC52-06NA25396. By acceptance 
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (7106) 



v9fb: A remote framebuffer infrastructure for linux 

Abhishek Kulkarni, Latchesar lonkov 
Los Alamos National Laboratory 

{kulkarni,lionkov}@lanl.gov 

ABSTRACT 

v9fb is a software infrastructure that allows extending framebufFer devices in Linux 
over the network by providing an abstraction to them in the form of a filesystem hierarchy. 
Framebuffer based graphic devices export a synthetic filesystem which offers a simple and 
easy-to-use interface for performing common framebuffer operations. Remote framebuffer 
devices could be accessed over the network using the 9P protocol support in Linux. We 
describe the infrastructure in detail and review some of the benefits it offers similar to 
Plan 9 distributed systems. We discuss the applications of this infrastructure to remotely 
display and run interactive applications on a terminal while ofFloading the computation to 
remote servers, and more importantly the flexibility it offers in driving tiled-display walls 
by aggregating graphic devices in the network. 

1. Motivation 
The framebuffer device in Linux offers an abstraction for the graphics hardware so that the 
applications using them do not have to bother about the low-level hardware interface to the 
device. Since the framebuffer is represented as a character device. a userspace application 
can open. read and write to it as a regular file. However. performing several routine graphic 
device operations like setting the resolution, fetching the color palette involves making use of 
a device-specific ioct/system call. This makes it difficult to export these devices as a network 
filesystem hierarchy. 
Several remote display protocols for exchanging graphics over the network already exist. The 
widely used X window system in Linux is inherently based on a client-server model and imple­
ments the X display protocol to exchange bitmap display content between the client and the 
server. It. however, has been a target of much criticism since the early days[2] because of its 
overly complex architecture, lack of authentication in the protocol and the limited configura­
bility in its client-server setup. Exporting raw pixel data of the framebuffer device makes it 
possible to run a window system on the CPU server. With the recent ongoing work on per­
container device namespaces in the Linux kernel, this infrastructure provides the foundation 
for implementing a multiplexing window system similar to Rio [7] for Linux. 
Remote display provides a way to interact with geographically distributed resources which are 
not within the physical proximity of the user. In addition to being used for remote display, 
v9fb can also be used in a few other interesting scenarios where it is not possible to use these 
other protocols. For instance. v9fb provides an alternative to monitoring the boot process of 
a remote machine in a network. This helps in cluster environments where the nodes are not 
equipped with a serial console to check the boot activity remotely. The booting node mounts 
the remote framebuffer device exported by the control node and the console of the node is 
mapped onto the remote framebuffer. 

The main motivation for this infrastructure is to ease the setup of tiled-display walls for 
modeling and simulation of scientific data. High-resolution displays are increasingly being used 
for visualization of large datasets stored at a central storage facility. Display walls made out 
of commodity clusters are closely tied to the display nodes and do not allow for dynamic 
configurations. Developing simulation and modeling applications for these high-resolution 
tiled display walls is typically done using message passing libraries, new pro~ramming models or 
software that use proxies to stream graphic commands over the network [l1J. v9fb transparently 
aggregates the graphic devices in a network and exports a network attached framebuffer thus 
allowing greater flexibility in setting up a visualization cluster. Network-centric visualization 
is invariably favored since it ensures integrity and security of the data being maintained at 



a central location [6]. The application program is provided with a single logical view of the 
framebuffer device and thus requires no modifications to its code. 

2. Introduction 

Everything in Plan 9, including the graphics infrastructure, is implemented as a file server 
[8]. The file metaphor describes a well-defined interface to interact with all the resources in a 
distributed system. This makes it easy to work with the system, keeping it simple yet powerful. 
Raster graphics capability in Plan 9 is provided by devices like /dev /draw, /dev /screen and 
/dev/window. Along with the input and console devices, Plan 9 offers a highly configurable 
and customizable window system that works equally well over the network [7]. 

Despite considerable efforts, graphics in Linux remains poorly integrated with the rest of the 
system. The limitations of running the X server as a super user (root) further allows security 
loopholes which could be used to compromise the system. The framebuffer device abstraction 
was introduced in Linux starting with kernel version 2.1.107 [12]. The framebuffer device is an 
abstraction for the graphics hardware and is responsible for initializing the hardware, determin­
ing the hardware configuration and capabilities, allocating memory for the graphics hardware 
and providing common routines to interact with the graphics hardware. The Linux kernel 
contains drivers that support several different video hardware devices. The v9fb infrastructure 
exports the raw framebuffer memory and its operations as files. This model could be further 
extended to support specialized graphics hardware like Graphics Processing Units (GPUs). 

The Linux kernel 2.6 offers support for the 9P protocol in the form of loadable kernel modules 
[1]. This allows the kernel to communicate with synthetic fileservers using the 9P distributed 
resource sharing protocol. v9fb leverages this support to implement a pseudo-framebuffer 
device which acts as an in-kernel 9P client that communicates with a framebuffer fileserver. 
The framebuffer appears as a regular character device to the applications using it. Every 
operation on this device is transparently translated into a 9P message that is sent across to 
the remote framebuffer fileserver. v9fb can work on any of the transport mechanisms like TCP 
or virtio offered by the 9P2000 implementation in the Linux kernel. 

Framebulfer 
application 

9P2000 TCP VSfbkmod 
VS1bfs transport IdevlfbO 

IdevlfbO 

Local twmlnal 
Rtmot. CPU server 

Figure 1: The local framebuffer device is exported by v9fbfs and mounted in the namespace 
of a remote CPU server which can draw to the remote device 

The synthetic framebuffer filesystem v9fbfs exports a hierarchy that corresponds to various 
framebuffer operations which can be executed just by reading off or writing to these files. 
This also allows the framebuffer devices to be mounted locally and to interact with them 
as if they were local devices as shown in Figure 1. v9fbfs runs on all the display nodes in 
a visualization cluster and permits a highly-configurable and dynamic setup in which remote 
display devices can be attached or detached to rendering nodes based on their processing load. 
v9fb is scalable and can be optimized to support many display devices driving a tiled display 
wall with an effective resolution of over million pixels. 

Coupled with the XCPU cluster management framework [4]. this provides a holistic high-



performance visualization environment that is easy to monitor and maintain. It allows a clear 
segregation of the display nodes from the render nodes and supports heterogeneous display 
hardware setup as a result of the framebuffer abstraction. 
In many cases, simple pixel-based remote display can deliver superior performance than the 
more complex designs [14] based on other thin-client platform designs. The framebuffer syn­
thetic filesystems allow adding multiple layers above the framebuffer much easier. Compression, 
encryption or the support for high-level drawing primitives on top of the framebuffer can be 
easily added without affecting the whole model. 

Figure 2: Running simulation and modeling programs directly on a hardware-accelerated frame­
buffer in absence of the XU window system 

Hardware-accelerated framebuffer makes use of the GPU operations to render graphics on 
the framebuffer device. Several libraries can use the framebuffer as a target to display high­
resolution 2D and 3D graphics. With some of the upcoming changes in the Linux graphics 
stack like the changes in DRM (Direct Rendering Manager) and Gallium3D, the new proposed 
architecture for 3D graphics drivers, it would be much easier to display 3D hardware-accelerated 
graphics on the framebuffer without needing the X server at all as shown in Figure 2. As The 
framebuffer can be utilized as a drawing surface by the OpenGL applications, the X server and 
many other graphic drawing libraries like Simple DirectMedia Layer (SDL) or General Graphics 
Interface (GG I). 
The remainder of this paper is organized as follows. In Section 3, we look at some of the 
related work on remote visualization systems and network-attached framebuffers. Section 4 
offers a detailed design overview of the v9fb infrastructure describing how each component 
in the system interacts with the others. The actual implementation details are discussed in 
Section 5. We conclude by mentioning some of the future work in the last section. 

3. Related Work 
A number of existing proprietary solutions for remote visualization are available. Along with 
parallel graphics rendering toolkits and cluster management tools. these solutions provide 
a complete software environment for large-scale modeling and simulations. HP's Remote 
Graphics software, Sun's Visualization System and SGl's Remote Visualization are among many 
other proprietary solutions that offer remote access to 2D and 3D graphics. Most of these 
remote display solutions primarily rely on VNC which uses the Remote Framebuffer Protocol 
(RFB) to exchange display updates over the network. 

Tiled display walls usually use pixel-based streaming software to stream the rendered data to 
the displax nodes or a network attached framebuffer. The Scalable Adaptive Graphics Envi­
ronment lSAGE), developed at the University of Illinois Chicago. is a distributed visualization 
architecture specifically designed for decoupling graphics rendering from the graphics display 
[5]. SAGE dispatches visualization jobs for rendering to the appropriate resource in a cluster 
and streams the resultant pixel data to the remote display. Others, like TeraVision, JuxtaView 



also provide an infrastructure for remotely displaying imagery in a cluster. 

OpenGL toolkits for cluster-based rendering like Chromium [3] or VirtualGL use techniques 
like function call interposing to "snoop" the OpenGL protocol and transfer it over the wire 
to the remote proxies in a cluster. This techniques make it difficult to keep up with the 
evolving standards and specifications described by OpenGL and add to the overhead in terms 
of complexity of the architecture. 

IBM's Scalable Graphics Engine (SGE-3) offers a hardware-based approach to a network­
attached framebuffer[9, 13]. It aggregates the pixel data generated by a rendering cluster to 
drive a high-resolution tiled display wall. Several other sort-first rendering systems like WireGL 
allow unmodified graphics application to be scaled to work on a high-resolution tiled-display. 

4. Design Overview 
The v9fb infrastructure consists of the following entities interacting with each other to make 
the process of accessing remote framebuffer devices as transparent as possible. 

• v9fbfs 

• v9fb kernel module 

• v9fbaggr 

• v9fbmuxfs 

v9fbfs is a userspace 9P fileserver that exports a filesystem hierarchy of the framebuffer. The 
v9fb kernel module creates a virtual framebuffer device that acts a 9P client translating all 
the framebuffer operations into POSIX-like file I/O operations. These calls are forwarded to 
either to v9fbfs or v9fbaggr over the 9P protocol. v9fbaggr is another userspace 9P fileserver 
which aggregates the framebuffer resources provided by multiple v9fbfs fileservers to export a 
logical view of a single large framebuffer. v9fbaggr offers an exactly similar interface as v9fbfs 
thus making it seamless to communicate with the v9fb kernel module. 

COntrol node 
SUOOlItS simliatlon 
ald rendering JObs 

to the cluster 

Tiled Display Wall 

Figure 3: High-performance computing environment for large-scale modeling and simulations 
using XCPU and V9FB 

Figure 3 shows a typical setup of a rendering cluster environment using XCPU and V9FB. 
At the first glance, the control node appears as a potential bottleneck in this environment. 
However, the control node only acts as a front-end for submitting jobs. With support for 



dynamic namespaces offered by XCPU, the aggregated framebuffer device could be mounted 
in the namespace of each rendering node which directly writes on to a specific framebuffer of 
the display wall. 

v9fbmuxfs is a userspace 9P fileserver which is almost similar to v9fbfs. v9fbmuxfs divides a 
framebuffer into multiple regions exporting each as a logical framebuffer device. It multiplexes 
the access to each of these regions to simultaneously display the framebuffer output from 
several clients. Since most modern graphic cards support tiled framebuffers, each tile could be 
rendered by different machine to achieve a much faster performance. 
v9fb offers secure delivery of the display data since it uses the authentication support in 
9P2000 protocol. The 9P auth information negotiates authentication between the client and 
the fileserver before exchange of raw pixel data takes place. The ordered delivery of messages 
in 9P protocol ensures there is no corruption of the frame pixels. Synchronization has not been 
taken into account but could easily be added into v9fb. 
Synthetic fileservers allow easy addition and removal of functional layers to the architecture. 
These can further be in the form of fileservers or simple libraries acting on the exported files. 
For instance, to make efficient use of the network bandwidth the raw pixel data transferred over 
the network can be compressed before sending. Several performance optimization techniques 
have been taken into account to achieve a good performance. 

4.1. Performance Optimization 
v9fb has been designed with low-latency high-bandwidth links in mind where the remote display 
nodes are connected to the control nodes using a suitably high-speed network interconnect like 
Gigabit Ethernet. Transmitting raw pixel data over the wire consumes considerable bandwidth 
for real-time visual applications like video streams and interactive simulations. 

4.2. Framebuffer compression 
The raw framebuffer data can be compressed using various compression algorithms before 
transmitting it across the network. This reduces the load on the network, however adds to 
the overhead of post-processing the data before displaying it on the framebufFer. Compression 
helps in low-latency links where the network gets overloaded by large bursts of raw pixel data. 
Video hardware has already started supporting compression at the device level to reduce power 
consumption [10]. Compression is done on a per-line basis by using a simple compression 
algorithm like run-length encoding (RLE) or the LZ77 algorithm. 

4.3. Framebuffer caching 
Caching the framebuffer data at the client can improve the performance in case of non­
interactive applications where most accesses involve reading from a static framebuffer. A 
write to the remotely mounted framebuffer invalidates the cache, and the changes have to 
be propagated back to the framebuffer fileserver. Introducing caching, however, adds to 
unmanaged complexity and the performance increases are seldom guaranteed[14]. 

4.4. Double Buffering 
Double buffering at the client and server side can improve performance in most cases. The 
network-attached framebuffer acts as a back buffer used by the framebuffer fileserver. The 
scanout buffer acts as a front buffer which represents the memory of the video device. Flipping 
between the two buffers compensates the network delay to a certain extent and can allow a 
continuous stream of frames on the video display. 

4.5. Multiplexed operations 
MUltiple clients writing to a single framebuffer pose a potential bottleneck in performance. 
Multiple reads and writes can be multiplexed at the server with separate threads performing 
the operations at once. This would significantly add to the performance of v9fbaggr which 
essentially communicates to multiple framebufFer fileservers v9fbfs simultaneously. When mul­
tiple Treads or Twrites are to be done in parallel, multiple threads are spawned by the server 
handling these request in parallel. 



5. Implementation 

5.1. v9fbfs 

v9fbfs is a userspace 9P fileserver which scans the local machine for existing framebuffer devices 
and exports an interface in the form of a file hierarchy given below. 

/ctl 
/data 
/mmio 
/fscreeninfo 
/vscreeninfo 
/cmap 
/con2fbmap 
/state 

5.2. ctl file 

The ctl file is used to control the framebuffer server and perform some several framebuffer 
display operations. It supports the following commands: 

pandisplay The pandisplay command is used to pan or wrap the display when the X or Y 
offset of the display have changed. 

blank blankmode Blank the framebuffer based on the supplied blank mode. This could be 
used to suspend or power down remote idle displays to save power. 

reload Reload the framebuffer filesystem interface. This looks for newly added framebuffer 
devices and exports them. 

5.3. data file 

The data file represents the actual raw framebuffer memory buffer usually represented by the 
/dev/fb[O-7] device in Linux. Writing to this file writes directly to the framebuffer memory. 
Similarly, this file is read to fetch the current framebuffer contents. 

5.4. mmio file 

This file represents the memory-mapped 10 memory of the framebuffer device. Userspace 
applications can program the M MIO registers by reading or writing to this file. This can be 
used to provide hardware acceleration to the framebuffer from the userspace. 

5.5. fscreeninfo file 

Reading from this file retrieves the fixed screen information of the framebuffer graphic device. 
The device-specific framebuffer information like device type, visual properties, acceleration 
support, the framebuffer memory length and addresses, the length of the scanline in bytes and 
the memory-mapped I/O addresses of the device is exported by this file. Fixed information 
cannot be changed, thus this file cannot be written to. 

5.6. vscreeninfo file 

Reading from this file fetches the virtual screen information of the framebuffer. This can 
be used to determine the display capabilities of the framebuffer, supported resolutions and 
color palettes, acceleration flags, bits-per-pixel and the margin and sync lengths among other 
information. Any of the virtual screen information can be changed by writing to this file. 

5.7. cmap file 

Get/Put the color palette information. 

5.B. con2fbmap file 

Used to map the console onto the framebuffer device and vice versa. 

5.9. state file 

State of the framebuffer device which is used by v9fbaggr to maintain synchronization between 
multiple displays. 



Reading and/or writing to a particular file invokes a corresponding framebuffer device-specific 
operation which talks to the underlying framebuffer device. This provides an alternative to 
using the ioctl system call for device communication and consequently allows the device to be 
accessed over the network. This filesystem interface exported by v9fbfs can also be mounted 
as a filesystem using V9FS. 

$ ./v9fbfs -d 
Found framebuffer device /dev/fbO ... 
/dev/fbO : VESA VGA 
Framebuffer device memory from OxfbOOOOOO to Oxfb600000 
Length: 6291456 bytes 
Framebuffer MMIO from (nil) to (nil) 
Length: 0 bytes 
listening on port 8883 

By mounting v9fbfs as a filesystem, framebuffer applications can use this interface to draw 
to the framebuffer device. With recent support for per-process namespaces in linux, it allows 
each process to have an exclusive view of the framebuffer device. 

$ mount -t 9p 192.168.10.1 /mnt/fb -0 port=8883, uname=abhishek, debug=511 
$ Is /mnt/fb/fbO/ 
cmap con2fbmap ctl data fscreeninfo state vscreeninfo 
$ cat /mnt/fb/fbO/fscreeninfo 
VESA VGA 
4211081216 6291456 
o 0 
2 
000 
4096 
o 0 

v9fbfs can handle multiple framebuffer devices (upto 8). It has been implemented using libspfs, 
a library for writing 9P2000 compliant userspace fileservers in linux. Applications drawing on 
the top of the framebuffer usually accept a command-line parameter to draw to a different 
framebuffer device. Alternatively, the global FRAMEBUFFER environment variable can be set 
to use a different framebuffer device. 

5.10. v9fbaggr 
v9fbaggr is a userspace 9P server and client typically running on a control node. On startup, 
v9fbaggr reads a configuration file v9fbaggr.conf which specifies the remote framebuffer devices 
that it needs to aggregate and their relative geometry to export a single logical framebuffer 
device. 
A typical configuration file for a 3x3 tiled display wall is shown below. 

tile1=192.168.10.40!8883, tile2=192.168.10.64!8883, tile3=192.168.10.67 
tile4=192.168.10.41!8883, tile5=192.168.10.65!8883, tile6=192.168.10.68 
tile7=192.168.10.42!8883, tile8=192.168.10.66!8883, tile9=192.168.10.69 

Currently, each newline in the configuration file represents a new row in the geometry of the 
tiled display wall. Each entry is represented by a nodename followed by its network address 
and the port on which the server is listening. Use of a rigid data representation format like 
s-expressions might be considered in the future. 

v9fbaggr communicates to the framebuffer fileserver v9fbfs running on these machines, fetches 
their fixed and variable display information and aggregates the remote display resources to 
provide a logical view of the 3x3 tiled display wall as a single unit of display. Since, v9fbaggr 
exports an exactly similar interface as that of v9fbfs, application remain transparent of the 
underlying multiple display devices spread across the network. Framebuffer operations like 
panning the display, turning the display blank, reloading the fileservers are translated such that 



they apply to all the remote framebuffer devices aggregated by v9fbaggr. In addition to this, 
the commands accepted by the ctl file also takes an additional parameter, the node name, to 
which the operation is to be applied. 
v9fbaggr implements a memory management unit to translate the virtual address of the ag­
gregated framebuffer to an address of a specific framebuffer device based on the geometry 
and layout of the tiled display wall. The virtual aggregated framebuffer provides a contiguous 
linear memory to the application using it. Each memory access to this framebuffer is translated 
to a 9P read or write to the appropriate framebuffer fileserver. The framebuffer memory of 
remote framebuffer devices are represented as segments and mapped onto the virtual aggre­
gated framebuffer exported by v9fbaggr. Memory accesses to this framebuffer pass through a 
segment selector which points to the various segment pointers depending on the actual layout 
of the framebuffer devices. v9fbaggr allows unmodified applications and programs to be run 
on a tiled display wall. 

5.11. v9fb kernel module 
The v9fb kernel module typically runs on the control node or the head node and creates a 
pseudo-framebuffer device which translates framebuffer device operations into corresponding 
9P calls. The intended use of this kernel module is to mount the filesystem exported by 
v9fbaggr so that it can act as a passthrough framebuffer device to draw transparently to the 
tiled display wall. It could also be used to mount a single remote framebuffer device for remote 
workstation display applications. 

$ modprobe v9fb address=192.168.1.40 
$ dmesg I tail -n 2 
[118398.958865] v9fb: Enabling remote framebuffer support 
[118398.960945] fbi: Remote frame buffer device 

$ rmmod v9fb 
$ dmesg I tail -n 1 
[118401.461253] v9fb: Unmounting remote framebuffer device 

The kernel module has been written so that v9fb supports existing framebuffer applications 
without changing them. It translates the device specific ioctl calls into a corresponding 9P 
call. For instance, to get the virtual screen information of a framebuffer device, the ioctl call 
to be used is as follows -

ioctl(fd, FBIOGET_VSCREENINFO, vscr); 
/* vscr is a structure to hold the variable screen 
information */ 

The v9fb kernel module translates this into an appropriate 9P operation to read from the 
vscreeninfo file as shown below. 

«< (Ox8059660) Twalk tag 0 fid 3 newfid 4 nwname 1 'vscreeninfo' 
»> (Ox8059660) Rwalk tag 0 nwqid 1 (0000000000000005 0 ") 

«< (Ox8059660) Twalk tag 0 fid 4 newfid 5 nwname 0 
»> (Ox8059660) Rwalk tag 0 nwqid 0 
«< (Ox8059660) Topen tag 0 fid 5 mode 0 
»> (Ox8059660) Ropen tag 0 (0000000000000005 0 ") iounit 0 

«< (Ox8059660) Tread tag 0 fid 5 offset 0 count 8168 
»> (Ox8059660) Rread tag 0 count 110 data 31303234 20373638 20313032 
34203736 38203020 300a3332 20300a31 36203820 30203820 38203020 30203820 
30203234 20382030 Oa300a30 Oa343239 34393637 

«< (Ox8059660) Tclunk tag 0 fid 5 
»> (Ox8059660) Rclunk tag 0 



«< (Ox8059660) Tclunk tag 0 fid 4 
»> (Ox8059660) Rclunk tag 0 

This provides a way to serialize and deserialize device-specific framebuffer calls and obtain the 
equivalent functionality by marshalling these calls using 9P. Most of the framebuffer ioctl 0 
calls are only done at the initialization time and once the display has been setup properly, 
majority of the traffic involves reading from and writing to the framebuffer memory. Thus, 
multiplexing the reads and writes promises considerable performance gains. 

5.12. v9fbmuxfs 
v9fbmuxfs is similar to v9fbfs in a way that it exports the framebuffer device interface as a 
filesystem. It however creates divides a single framebuffer device into separate regions exporting 
each as a virtual framebuffer device which a client can write to. Simultaneous rendering and 
display of a single frame by multiple clients or multiple graphic processing units on a single 
client can be done with the help of v9fbmuxfs. The implementation of v9fbmuxfs has not 
been done and thus qualifies as a future work for this infrastructure. 

6. Future Work 
Several issues still remain to be dealt with to use v9fb in a production visualization environment. 
Due to constraints in time, actual performance metrics for driving tiled display walls using v9fb 
could not be obtained by the time of this writing. Overall performance can be tuned using 
several ways discussed in Section 4. Apart from this, we are working to support the following 
features for the v9fb infrastructure. 

6.1. Support for input events 
Sending keyboard and mouse events over the network forms an integral part of remote display 
technologies. Currently, v9fb does not address the forwarding of input events over the network. 
Extending v9fb to support input events is trivial and we have started working on it. 

6.2. Hardware-accelerated framebuffer 

Due to the proprietary binary-only drivers distributed by major graphic card manufacturing 
firms like NVIDIA, it has become difficult to use hardware acceleration for the framebuffer. 
With several initiatives to revamp the state of graphics in Linux, it would soon be possible 
to use the framebuffer or the in-kernel Direct Rendering Manager (DRM) to draw to the 
video memory. DirectFB is a thin library which provides hardware graphics acceleration to the 
framebuffer. A DirectFB extension to v9fb would allow using hardware acceleration to draw 
high-resolution 3D graphics on the framebuffer device. 

6.3. Communication between v9fbfs 
One of the most common uses of the tiled display wall is to display high-resolution imagery. 
Moving and panning of images on the tiled display wall results in resending the pixel data from 
the control nodes to all the display nodes. This forms a potential bottleneck at the control 
node. Enabling communication between the individual framebuffer fileservers would increase 
the performance of interactive applications on the display wall. 

7. Conclusion 
v9fb provides a novel approach of accessing remote devices over the network in Linux using 
concepts and ideas employed by Plan 9 since its inception. Withstanding the several difficulties 
posed by the rigid device subsystem in Linux, this scheme could be easily extended to allow 
exporting various other devices as a filesystem over the network. v9fb finds various applica­
tions in high performance computing and remote visualization technologies. It offers flexibility 
and configurability leading to dynamic architectures in a large-scale modeling and simulation 
environment. We are working on several optimizations to this infrastructure to make it capable 
enough for use in production environments. 

References 
[1] Eric Van Hensbergen and Ron Minnich. Grave robbers from outer space: Using 9p2000 

under linux. In In Proceedings of Freenix Annual Conference, pages 83-94, 2005. 

[2] Don Hopkins. The X-Windows Disaster. UNIX-HATERS Handbook. 



[3] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter D. Kirchner, 
and James T. Klosowski. Chromium: a stream-processing framework for interactive 
rendering on clusters. ACM Trans. Graph., 21(3):693-702, 2002. 

[4] Ronald Minnich and Andrey Mirtchovski. Xcpu: a new, 9p-based, process management 
system for clusters and grids. In CLUSTER. IEEE, 2006. 

[5] Krishnaprasad Naveen, Vishwanath Venkatram, Chandrasekhar Vaidya, Schwarz Nicholas, 
Spale Allan, Zhang Charles, Goldman Gideon, Leigh Jason, and Johnson Andrew. Sage: 
the scalable adaptive graphics environment. 

[6] Brian Paul, Sean Ahern, Wes Bethel, Eric Brugger, Rich Cook, Jamison Daniel, Ken 
Lewis, Jens Owen, and Dale Southard. Chromium renderserver: Scalable and open remote 
rendering infrastructure. IEEE Transactions on Visualization and Computer Graphics, 
14(3):627-639, 2008. 

[7] Rob Pike. Rio: Design of a concurrent window system. February 2000. 

[8] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard Trickey, 
and Phil Winterbottom. Plan 9 from Bell Labs. Computing Systems, 8(3):221-254, 
Summer 1995. 

[9] Prabhat and Samuel G. Fulcomer. Experiences in driving a cave with ibm scalable graphics 
engine-3 (sge-3) prototypes. In VRST '05: Proceedings of the ACM symposium on Virtual 
reality software and technology, pages 231-234, New York, NY, USA, 2005. ACM. 

[10] Hojun Shim, Naehyuck Chang, and Massoud Pedram. A compressed frame buffer to 
reduce display power consumption in mobile systems. In ASP-DAC '04: Proceedings of 
the 2004 conference on Asia South Pacific design automation, pages 818-823, Piscataway, 
NJ, USA, 2004. IEEE Press. 

[1:1.] Munjae Song. A survey on projector-based pc cluster distributed large screen displays and 
shader technologies. 

[12] Geert Uytterhoeven. The Linux Frame Buffer Device Subsystem. Linux Expo '99, 1999. 

[13] Bin Wei, Douglas W. Clark, Edward W. Felten, Kai Li, and Gordon Stoll. Performance 
issues of a distributed frame buffer on a multicomputer. In HWWS '98: Proceedings of 
the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 87-96, 
New York, NY, USA, 1998. ACM. 

[14] S. Jae Yang, Jason Nieh, Matt Selsky, and Nikhil Tiwari. The performance of remote 
display mechanisms for thin-client computing. In In Proceedings of the 2002 USENIX 
Annual Technical Conference, 2002. 




